

Profiling human fallopian tubes with single-cell RNA sequencing

Zhiyuan Hu

MRC Weatherall Institute of Molecular Medicine

29 March 2019

High-grade serous ovarian cancer (HGSOC) is the most aggressive subtype without robust molecular classification

High-grade serous ovarian cancer (HGSOC)

- ~80% ovarian cancer cases
- Five-year survival ~30%

Molecular subtypes?

- Prognostic prediction
- Targeted therapy

Cell-of-origin may provide evidence for molecular subtyping

Knowledge of fallopian tube epithelium, the putative origin of HGSOC, was limited

Workflow: identification of novel subtypes in fallopian tube epithelium by single-cell RNA-seq

Normal tissues
Not cancer samples

Single-cell transcriptome recapitulates two major cell types in normal fallopian tube epithelium

UMAP: Dimensional reduction to project transcriptomic data onto a 2-dimensional plane

We identified four novel secretory subtypes in fallopian tube epithelium (normal tissue)

We identified four novel secretory subtypes in fallopian tube epithelium (normal tissue)

Differentiated cluster RNA synthesis ↑

- KRT17 cluster (KRT17+) Keratins+ MHCII+ ALDH+
- **EMT cluster** (RGS16+) Extracellular matrix ↑
 - Cell cycle cluster (Stathmin+)
 Cell cycle ↑ DNA repair ↑
 Chromatin remodeling ↑

The *in silico* populations of secretory cells were validation at the protein level

Differentiated cluster RNA synthesis ↑

KRT17 cluster (KRT17+) Keratins+ MHCII+ ALDH+

The *in silico* populations of secretory cells were validation at the protein level

Differentiated cluster RNA synthesis ↑

KRT17 cluster (KRT17+) Keratins+ MHCII+ ALDH+

EMT cluster (RGS16+) Extracellular matrix ↑

Cell cycle cluster (Stathmin+)
Cell cycle ↑ DNA repair ↑
Chromatin remodeling ↑

The *in silico* populations of secretory cells were validation at the protein level

Differentiated cluster RNA synthesis ↑

KRT17 cluster (KRT17+) Keratins+ MHCII+ ALDH+

RGS16

The *in silico* populations of secretory cells were validation at the protein level

Differentiated cluster RNA synthesis ↑

KRT17 cluster (KRT17+) Keratins+ MHCII+ ALDH+

EMT cluster (RGS16+) Extracellular matrix ↑

Cell cycle cluster (Stathmin+) Cell cycle ↑ DNA repair ↑ Chromatin remodeling ↑

Stathmin/STMN1

Cell-of-origin may provide evidence for molecular subtyping

Next step: decomposing the bulk tumours into the proportions of individual cellular subtypes.

Deconvolution is decomposing bulk expression data with transcriptome of individual cellular subtypes

Cell subtypes profiled by single-cell RNA-seq

Deconvolution step 1: constructing a reference matrix to represent cell subtypes profiled by single-cell RNA-seq

Cellular subtypes in normal fallopian tube epithelium

52 marker genes

Deconvolution step 2: estimating the proportion of each cell type in bulk tumour expression data

Estimating tumour composition

Tumour 1 Tumour 2 Tumour 3 MRC Weatherall

Deconvolution equation

Bulk Tumour =
$$\alpha = \beta + \beta + \gamma + \delta + \delta + \epsilon$$

Reference matrix of normal tissue-of-origin

What is the clinical significance of deconvolution results?

Fraction

Test the relationship between EMT scores of tumours and overall survival of patients

AOCS microarray dataset:

- Hazard ratio = 2.69
- P-value = 0.0004

EMT-high tumours are robustly correlated to poor prognosis of HGSOC

Correlation between EMT-high tumours and overall survival

Dataset (N > 100)	Hazard ratio	P-value	Citation
AOCS (Grade≥2)	2.69	0.0004	Tothill et al., 2008
GSE49997			Pils et al., 2012
GSE13876			Crijns et al., 2009
GSE26712			Bonome et al., 2008
GSE26193			Mateescu et al., 2011
GSE51088			Karlan et al., 2014
E.MTAB.386			Bentink et al., 2012
TCGA OvCa RNA-seq			Bell et al., 2011

Take-home messages

Acknowledgments

Thank you very much for listening!

Prof Ahmed Ahmed

Abdulkhaliq Alsaadi Kay Chong Laura Santana Gonzalez Mara Artibani Matteo Morotti Mohammad Karaminejadranjbar Nina Wietek And all our colleagues

Dr Christopher Yau Kaspar Märtens Tammo Rukat Yun Feng

Twitter @zhi_yuan_hu

WIMM Flow Cytometry Facility

WIMM Single Cell Facility

WIMM Computational Biology Research Group (CBRG)

Nuffield Department of Women's & Reproductive Health

St Cross College

Ovarian Cancer Action CSC-NDM Studentship